This site uses cookies to collect activity data and personalize content. By continuing to navigate this site, you agree to allow us to collect information using cookies. Learn more about how we care for your data in our privacy notice.

Accept

Microarray Patch Resources

By Medical Devices and Health Technologies

PATH is advancing the microarray patch (MAP) delivery technology platform for high priority vaccine and essential medicine global health needs.

About PATH's work advancing microarray patch technology

For more than a decade, PATH has assessed and catalyzed microarray patch (MAP) transdermal technologies that have the potential to improve access and delivery of a broad range of vaccines and essential medicines in low-resource settings . As a disruptive technology, MAPs could have a transformative impact on health.

Microarray patches, also known as microneedle patches, consist of microscopic projections that are applied to the body like a small bandage, painlessly penetrating the skin’s outermost layer to deliver a drug or vaccine to the top layers of the skin.

MAPs have shown the potential for:

  • Increased thermostability (reducing cold chain burdens and facilitating access to remote areas).
  • Ease-of-use (facilitating self-administration or delivery by lesser-trained health care workers).
  • Needle-free delivery (eliminating the risk of needlestick injuries typically associated with needle and syringe delivery).
  • Increase coverage and reduced programmatic costs (through enabling alternative delivery scenarios such as supplemental immunization activities ).

Microarray Patch Center of Excellence

PATH’s Center of Excellence for Microarray Patch Technology is a four year initiative to mobilize efforts to accelerate the development of MAPs for critical vaccines, essential medicines, and diagnostics, and ensure that the MAP delivery technology platform can maximize its impact by meeting global public health needs.

Together with the community of MAP developers, industry, and global health stakeholders, the PATH Center of Excellence aims to forge a future for MAPs that maximizes the potential of this innovative delivery technology platform. Or connect with us directly via email at: MAPs@path.org

READ MORE

Assessing usability and fit of MAPs

PATH conducted a user evaluation in Ghana of placebo MAP prototypes for vaccine delivery (no projections or antigen). Feedback was gathered from health care workers and vaccine recipients for maternal immunization, and caregivers for child immunization on usability, acceptability, and programmatic fit for MAPs. The results from this study will support user-center product development so that the final product is easy to use and programmatically suitable for low-resource settings. Read the full report: Evaluation of Microarray Patches for Human Factors: Considerations and Program Feasibility.

Read more

New global map of Microarray Patch developers

The MAP CoE created a global map tracking known MAP developers around the world and will update as needed. Versions of this map can be downloaded at: https://www.path.org/resources/map-microarray-patch-technology-developers/  Image: PATH.

The MAP CoE created a global map tracking known MAP developers around the world and will update as needed. Versions of this map can be downloaded at: https://www.path.org/resources/map-microarray-patch-technology-developers/ Image: PATH.

MICROARRAY PATCH CATEGORY RESOURCES

Technology overview

  • Technology update: dissolvable microneedle patches for vaccine delivery (Rogers, 2019) Read here.
  • Microneedle patches for vaccination in developing countries. (Arya, 2016) Read here.
  • Potential use of microarray patches for vaccine delivery in low- and middle- income countries. (Peyraud, 2019) Read here.
  • Advancing Transdermal Drug Delivery: PATH’s Microarray Patch Center of Excellence aims to accelerate transdermal patch technology for public health needs. Read here.

Immune response and skin immunology

  • Enhancing humoral immunity via sustained-release implantable microneedle patch vaccination (Boopathy, 2019 ) Read here.
  • Langerin negative dendritic cells promote potent CD8+ T-cell priming by skin delivery of live adenovirus vaccine microneedle arrays. (Bachy, 2013) Read here.
  • Skin immunisation activates an innate lymphoid cell-monocyte axis regulating CD8+ effector recruitment to mucosal tissues. (Zaric, 2019) Read here.
  • Skin vaccination with live virus vectored microneedle arrays induce long lived CD8(+) T cell memory. (Becker, 2015) Read here.

Usability and end-user studies

  • End-user acceptability study of the nanopatchTM; a microarray patch (MAP) for child immunization in low and middle-income countries. (Guillermet, 2019). Read here.

HEALTH AREA RESOURCES

Contraception

  • Long-acting reversible contraception by effervescent microneedle patch. (Li, 2019.) Read here.
  • Silk Fibroin Microneedle Patches for the Sustained Release of Levonorgestrel (Yavuz, 2020.) Read here.

Dengue virus

  • Efficient Delivery of Dengue Virus Subunit Vaccines to the Skin by Microprojection Arrays. (Muller, 2019.) Read here.

Ebola

  • Intradermal immunization by Ebola virus GP subunit vaccines using microneedle patches protects mice against lethal EBOV challenge. (Liu, 2018). Read here.

Hepatitis B

  • Feasibility of hepatitis B vaccination by microneedle patch: Cellular and humoral immunity studies in rhesus macaques. (Choi, 2019). Read here.
  • Skin immunization with third-generation hepatitis B surface antigen using microneedles. (Nguyen, 2019). Read here.

HIV and HIV PrEP

  • Acceptability of Microarray Patches for Delivery of HIV Pre-exposure Prophylaxis (PrEP) Among Women and Health Care Providers in South Africa. (PATH, 2016). Read here.
  • Design, formulation and evaluation of novel dissolving microarray patches containing a long-acting rilpivirine nanosuspension. (Mc Crudden, 2018). Read here.
  • Long-lived tissue resident HIV-1 specific memory CD8+ T cells are generated by skin immunization with live virus vectored microneedle arrays. (Zaric, 2017) Read here.
  • Modelling the intradermal delivery of microneedle array patches for long-acting antiretrovirals using PBPK. (Rajoli, 2019.) Read here.
  • Vaginal Applicator Development for Delivery of Microarray Patches Containing Rilpivirine for HIV Pre-exposure Prophylaxis. (PATH, 2016). Read here

Human papillomavirus

  • Immune response and reactogenicity of an unadjuvanted intradermally delivered human papillomavirus vaccine using a first generation Nanopatch™ in rhesus macaques: An exploratory, pre-clinical feasibility assessment. (Meyer, 2019). Read here.
  • Prophylactic HPV vaccine microarray patch: Target product profile. Draft. (PATH, 2020). Read here.

Influenza

  • An economic model assessing the value of microneedle patch delivery of the seasonal influenza vaccine. (Lee, 2015). Read here
  • Clinical study and stability assessment of a novel transcutaneous influenza vaccination using a dissolving microneedle patch.(Hirobe,
    2015). Read here.
  • Opportunities and challenges in delivering influenza vaccine by microneedle patch. (Jacoby, 2015). Read here.
  • Safety, tolerability, acceptability and immunogenicity of an influenza vaccine delivered to human skin by a novel high-density microprojection array patch (Nanopatch™). (Fernando, 2018). Read here.
  • Safety, tolerability, and immunogenicity of influenza vaccination with a high-density microarray patch: Results from a randomized, controlled phase I clinical trial (Forster, 2020).Read here.
  • The Safety, Immunogenicity and Acceptability of Inactivated Influenza Vaccine Delivered by Microneedle Patch: a Randomized, Partially Blind, Placebo-Controlled Phase 1 Trial. (Rouphael, 2017). Read here

Malaria

  • Assessing the Technical and Programmatic Feasibility of a Microarray Patch for Intradermal Delivery of Primaquine to Treat P. vivax. (PATH, 2017). Read here.

Measles Rubella

  • A Microneedle Patch for Measles and Rubella Vaccination Is Immunogenic and Protective in Infant Rhesus Macaques (Joyce, 2018). Read here.
  • A microneedle patch for measles and rubella vaccination: a game changer for achieving elimination (Prausnitz, 2020.) Read here.
  • Measles and rubella microarray array patches to increase vaccination coverage and achieve measles and rubella elimination in Africa. (Moss, 2019). Read here.
  • Measles-rubella microarray patch (MR–MAP) target product profile (WHO, UNICEF 2019). Read here.

Neonatal and infant health

  • Transdermal delivery of gentamicin using dissolving microneedle arrays for potential neonatal sepsis. (González-Vázquez, 2017). Read here.

Polio

  • High-density microprojection array delivery to rat skin of low doses of trivalent inactivated poliovirus vaccine elicits potent neutralising antibody responses. (Muller, 2017). Read here.
  • Inactivated polio vaccination using a microneedle patch is immunogenic in the rhesus macaque. (Edens, 2015).Read here.
  • Skin delivery of trivalent Sabin inactivated poliovirus vaccine using dissolvable microneedle patches induces neutralizing antibodies. (Donadei, 2019). Read here.

Rabies

  • Rabies vaccine microarray patch: Target product profile. Draft. (PATH, 2020).Read here.

PATH co-chairs the Delivery Technologies Working Group within WHO’s Immunization Practices Advisory Committee (IPAC). Its mission is to maximize impact of immunization products for public-sector use, including combination vaccine/device products such as MAPs and other alternative delivery technologies. A list of resources related to vaccine delivery technologies, as well as materials developed by the Delivery Technologies Working Group, are available through TechNet-21, a global network of immunization professionals.

Meet the MAP Center of Excellence co-directors

  1. Darin Zehrung

    Program Leader, Medical Devices and Health Technologies

  2. Courtney Jarrahian

    Portfolio Leader: Packaging & Delivery Technologies

Read More